Exam Contemporary Statistics
Date: Friday, January 30, 2015
Time: 9.00-12.00
Place: V 5161.0293
Progress code: WICSA-10

Rules to follow:
e This is a closed book exam. Consultation of books and notes is not permitted.
e Do not forget to fill in your name and student number.

e There are 7 exercises, and the numbers of points per exercise are indicated within
boxes. 100 points can be reached and 90 points are required for the best grade
(10.0); i.e. 10 points are free. The exam grade will be:

points
10

79}

grade := 1+ min{

e We wish you success with the completion of the exam!

START OF EXAM
1. Ridge Regression.

Consider a linear regression problem with p predictors and N observations:
== X f-}-8

We assume that the observations of each predictor have been standarized to mean
0 and variance 1, and that there is no intercept term f; in the model. The regressor
matrix X is then an N-by-p matrix, y is the N-dimensional output vector, § is the
p-dimensional vector of unknown regression coefficients, and ¢ is the N-dimensional
vector of noise variables, which is here assumed to be multivariate Gaussian dis-
tributed:

€ ire N(O, O'QIN)

(a) For a given penalty parameter A > 0 the ridge regression estimator ,5‘”"193
minimises the criterium:

RSS(A) = (y — XB)T(y — XB) + X578
in 3. Show that the solution is given by:
)érridge — (XTX + )\Ip)_IXTy

(b) Proof the following properties of the ridge regression estimator B”dge:
i. fridee = (I, + M(XTX) ™)' B1q, where frs = (XTX)1XTy
ii. Var(fmdse) = o2(XTX + M) 'XTX(XTX 4 ML)
ili. Bias(8%¢) = E[fse] — g = —_A(XTX + A,)"18

to be continued below



(c) Briefly describe how in practice an appropriate penalty parameter A can
be found: (i) Explain (see Hint) how Cross-Validation works, and (ii) explain
verbally why information criteria, such as AIC and BIC, cannot be used for
the determination of .

HINT: To explain the concept of Cross-Validation you can either give a precise
verbal description or some pseudo code or a mixture thereof.

2. Moore Penrose Pseudo-Inverse. DO" smiuidh naw
Consider a N-by-p matrix X with rank %k, where k < p < N, and let X = UDVT
be the singular value decomposition (SVD) of X. The matrices U and V are then
N-by-p and p-by-p orthogonal matrices, and D is a p-by-p diagonal matrix with
diagonal entries d; > dy > ... > dp > 0.
A matrix X7 is called the Moore Penrose Inverse of X if and only if the following
four properties are fulfilled:
(i) XXX =X
(i) XTXXt =X+
(iii) The matrix X*X is symmetric
(iv) The matrix XX* is symmetric

The Moore Penrose Inverse X' of X can be computed as follows:
Xt =vD u¥

where D7 is a p-by-p diagonal matrix with the diagonal elements e, ..., e,, where
e; =1/d; if d; > 0, and e; = 0 otherwise (i =1,...,p).

(a) |24+2+2+2 | Show that X* = VDT U7 fulfills the four properties (i-iv).

b) Show that the matrix DT is the Moore Penrose Inverse of D.
c) Given that the matrix X has full-column rank (i.e. k¥ = p), show that

B=X*y

is identical to the Least-Squares (LS) estimator S5 = (X7X) 'XTy for the
unknown regression coefficient vector 5 in the standard linear regression prob-
lem:

y=XB+¢

where X is the N-by-p regressor matrix, y is the N-dimensional output vector,
and ¢ is the N-dimensional vector of noise variables, which is assumed to be
multivariate Gaussian distributed: € ~ N(0,0%Iy).!

(d) Re-consider the regression problem from part (¢) and briefly describe how
the Bootstrap (Bootstrapmg procedure) could be used to approximate the
covariance matrix COV(5) = o2(XTX)~! of the estimator § = X*y.

HINT: You can either give a precise verbal descuptlon or some pseudo code
or a mixture thereof.

to be continued below

! Just note: Here it does not matter whether the columns of X correspond to p covariates or whether
X is built from p — 1 covariates with an additional column of 1’s for the intercept.

2



3. Cubic Spline.

Consider the interval [—2, 4], in which we fix one point £ = 1. Consider a piecewise
cubic spline with the knot £ = 1:

flz) = Z Bihi(z)

where x € [—2,4|, and hy, ..., hg are basis functions.

(a) Assume that f(z) is a piecewise polynomial function with K = & basis
functions. Give the basis functions hq, ..., hg and the three linear constraints
that this cubic spline imposes on the parameters ; (i =1,...,8).

(b) The same spline can also be represented with a set of truncated power basis
functions, where the constraints are automatically incorperated. Represent the
spline from (a) with a set of K* = 5 truncated power basis functions:

fl@) =3 bibi(a)

HINT: This exercise is about a 'cubic spline’; not about a 'natural cubic spline’.

4. Piecewise-Constant Spline. _
Consider the interval [—5,5], in which we fix two points & = —1 and & = 2
Consider a piecewise constant spline with the two knots £, = —1 and & = 2:

K
flx) = Z Bihi(x)

where z € [—5, 5], and Ay, ..., hx are basis functions.

Consider the 10 data points (z;,y;) (i = 1,...,10), provided in Table 1. Use the
data to fit the spline y; = f(x;)+€; (i = 1,.. ., 10), where the noise variables are i.i.d.
N(0,0?) distributed, by least squares regression. That is, compute the estimator
BLs of the vector of the unknown parameters 8 = (81,..., 8x)7 by plugging X and
y into the equation:

BLS = (XTX)"ley

i 1 2 3 ! ) 6 @ 8 9 10
z; [ -49 -32 -21 -1.9 i’ -09 1.7 1.9 122 3.7 49
y; | -1.0 -16 -06 -0.8 ' 24 16 20 -15 -1.2 -03

Table 1: These 10 data points can be used for fitting the piecewise-constant spline.

to be continued below



5. Linear Discriminant Analysis.

Consider a classification problem where the output ¥ can belong to three different
classes: Y € {1,2,3}. It is known that the output Y is associated with one single
predictor variable X, and from training data (z;,y;) (i = 1,...,N) all unknown
LDA parameters have been estimated. Thereby the following results were obtained:
The estimates for the three class prior probabilities are: #; = 0.1, 3 = 0.1 and
73 = 0.8, the estimates for the three class means are given by: f; = —2, 2 = 0,
and [i3 = 1, and finally the estimate for the common variance is: 62 = 1.

(a) Compute the decision boundaries of this LDA model.

(b) Give the resulting decision rule § = G(z).
HINT: Note that G : R — {1,2, 3} is a piece-wise function.

(c) Assume that the estimated LDA model, given above, is the true underlying
model. Explain verbally why the expected error rate for the classification g1
of a new observation zy.; will not be zero. {One sentence might be enough.)

(d) Still assuming that the LDA model is correct, give an explicit equation for
the expected error rate in terms of cumulative distribution functions (CDFs).

HINT: A Gaussian distribution with parameters x € R and 0% € R* has the
PDF:

2
—0.5E 40

1
p(‘r“"’a 02) = : ; €

5~
3

for z € R.
The CDF of this Gaussian distribution is given by: F), ,2(zo) = [ n(z|p, 0)dx

6. AdaBoost - Population Minimizer.
Consider a binary classification problem with an output variable Y € {—1, 1}, where
Y = —1 means that an observation belongs to the first class, while Y = 1 means that
an observation belongs to the second class. Let z be the realisation of a potential
predictor variable X, and given X = z, let § = f(z) € R be a predictor for the
corresponding output realisation y of Y.
Show that the predictor

) 110g( PY =1X =z) )

2 P(Y = -1|X =2)

is the 'population minimiser’ which minimises the conditional expectation:

By x=[L(Y, f(x))]

where L(.,.) is the exponential loss function with L(a,b) = e7%" for all @ € R and
beR.

HINT: For a given z € R, f(z) is real-numbered. Hence, in your computations you
might want to substitute f(z) by z where z € R.

to be continued below



7. EM algorithm.

In a clinical study focusing on prostate cancer for each male proband a medical
diagnostic test was performed on each of 6 successive days. For n = 196 (diseased
probands) with at least one positive test the following frequency distribution was
observed:

Positive tests)f; 0 1 2 3 4 5 6
Frequency ZO =7 Zl =37 ZQ =22 Zg =25 Z4 =29 Z5 =34 Zﬁ =49

Table 2: Results of the clinical study on prostate cancer. Note that the explicit
counts, provided in this table, are not required in this exercise.

Let the random variable Z; describe the number of diseased probands that had @
positive test results (: = 0,...,6), where Z; has not been recorded, since those
probands were assumed not to suffer from prostate cancer.?

Let the random variable X; describe the number of positive tests for proband j, and
assume that the X;’s are i.i.d. and Binomial distributed with parameters m = 6
and 7 (the PDF of the Binomial distribution is given below).

(a) Assume that the realisation of Z; was also known. Determine the log-
likelihood ly(Zy, Z1, - .., Zg; 7)) (Cof the complete data’) and derive the Maxi-
mum Likelihood (ML) estimator for 7. Give all expressions in terms of the
counts Zy, ..., Zg. That is, do not plug-in the concrete counts from the table.

(b) Now assume that the parameter 7 rather than the realisation of Zp was
known. What is then the expectation of Z,7
To this end first determine the probability v := P(X; = 0). Moreover, Zy + n
can be interpreted as the 'number of trials till n = 196 positive tests have been
obtained’; a quantity which is negative Binomial distributed. What are the
parameters of this negative Binomial distribution? And what is the conditional
expectation E[Zy|(Z1,. .., Zs), m| of Zo?

(c) The E-step: Give a formula for the conditional expectation Q(, ﬁ(j)‘),
defined below, of Ip((Zy, ..., Zs); 7):

Q(m, #9) := Ello((Zo, Z1, - - -, Zo); T)|(Z0, - - - 5 Zo), 7D

where 71 is a fixed value for 7. HINT: Re-use your results from parts (a-b).

(d) |1] The M-step: Give a formula for #U*+!) which maximises Q(r, #) w.r.t.
the free parameter 7. HINT: Re-use your result from part (a).

to be continued below

2Just note: Even if the number of probands without any positive test result Zy had been recorded,
it would have been the sum of those probands that actually do not have prostate cancer and those that
suffer from prostate cancer but had 6 false-negative test results.



(e) EM algorithm: Give pseudo code for an EM-algorithm which iteratively
infers the ML-estimator 71 for the log-likelihood I((Zy, ..., Zs);m) (‘of the
incomplete data’).

HINTS: Re-use your results from the previous parts.
Proposed structure of your pseudo code:

START OF PSEUDO CODE
Initialisation: Set 7! = . ..
Iterations For t = 1,2, 3, etc.

e E-Step: Compute ...

e M-Step: Compute 7+ =, ..
e If ... then stop the iterations and output Ty == ...
END OF PSEUDO CODE

SOME GENERAL HINTS:
The density (PDF) of the binomial distribution with parameters n € N and
7 € [0,1] is given by

ploin,m) = (Z) % (1—7)ne

for i € {0, 1,en s 1k

The density (PDF) of the negative binomial distribution with two parameters
r € Nand 0 € [0,1] is given by

a’[‘_

p(ald,r) = ( 1) A

r—T
forze{r,r+1,r+2,...}

Also note that the expectation of the negative Binomial distribution is given by
E[X] =r/6. Recall that a common interpretation is the following one: ’An experi-
ment is successful with probability € and it fails with the complementary probability
1—6. The experiment is repeated independently. The negative Binomial distributed
variable X describes how often this experiment has to be repeated until r successes
have been observed.’

END OF EXAM



