Exam Contemporary Statistics

Date: Friday, January 30, 2015

Time: 9.00-12.00 Place: V 5161.0293

Progress code: WICSA-10

Rules to follow:

• This is a closed book exam. Consultation of books and notes is not permitted.

• Do not forget to fill in your name and student number.

• There are 7 exercises, and the numbers of points per exercise are indicated within boxes. 100 points can be reached and 90 points are required for the best grade (10.0); i.e. 10 points are free. The exam grade will be:

$$\mathrm{grade} := 1 + \min\{\frac{points}{10}, 9\}$$

• We wish you success with the completion of the exam!

START OF EXAM

1. Ridge Regression. 20

Consider a linear regression problem with p predictors and N observations:

$$y = \mathbf{X}\beta + \epsilon$$

We assume that the observations of each predictor have been standarized to mean 0 and variance 1, and that there is no intercept term β_0 in the model. The regressor matrix **X** is then an N-by-p matrix, y is the N-dimensional output vector, β is the p-dimensional vector of unknown regression coefficients, and ϵ is the N-dimensional vector of noise variables, which is here assumed to be multivariate Gaussian distributed:

$$\epsilon \sim N(0, \sigma^2 \mathbf{I}_N)$$

(a) 5 For a given penalty parameter $\lambda \geq 0$ the ridge regression estimator $\hat{\beta}^{ridge}$ minimises the criterium:

$$RSS(\lambda) = (y - \mathbf{X}\beta)^{T}(y - \mathbf{X}\beta) + \lambda \beta^{T}\beta$$

in β . Show that the solution is given by:

$$\hat{\beta}^{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^T y$$

(b) $\boxed{4+2+4}$ Proof the following properties of the ridge regression estimator $\hat{\beta}^{ridge}$:

i.
$$\hat{\beta}^{ridge} = (\mathbf{I}_p + \lambda (\mathbf{X}^T \mathbf{X})^{-1})^{-1} \hat{\beta}_{LS}$$
, where $\hat{\beta}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$

ii.
$$Var(\hat{\beta}^{ridge}) = \sigma^2(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_p)^{-1}\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_p)^{-1}$$

iii. Bias
$$(\hat{\beta}^{ridge}) = E[\hat{\beta}^{ridge}] - \beta = -\lambda (\mathbf{X}^T \mathbf{X} + \lambda I_p)^{-1} \beta$$

(c) 3+2 Briefly describe how in practice an appropriate penalty parameter λ can be found: (i) Explain (see Hint) how Cross-Validation works, and (ii) explain verbally why information criteria, such as AIC and BIC, cannot be used for the determination of λ .

<u>HINT</u>: To explain the concept of Cross-Validation you can either give a precise verbal description or some pseudo code or a mixture thereof.

2. Moore Penrose Pseudo-Inverse. 20 DOT Special name

Consider a N-by-p matrix **X** with rank k, where $k \leq p \leq N$, and let **X** = \mathbf{UDV}^T be the singular value decomposition (SVD) of **X**. The matrices **U** and **V** are then N-by-p and p-by-p orthogonal matrices, and **D** is a p-by-p diagonal matrix with diagonal entries $d_1 \geq d_2 \geq \ldots \geq d_p \geq 0$.

A matrix X⁺ is called the **Moore Penrose Inverse** of X if and only if the following four properties are fulfilled:

- (i) $XX^+X = X$
- (ii) $X^{+}XX^{+} = X^{+}$
- (iii) The matrix X^+X is symmetric
- (iv) The matrix XX^+ is symmetric

The Moore Penrose Inverse X^+ of X can be computed as follows:

$$\mathbf{X}^+ = \mathbf{V} \mathbf{D}^+ \mathbf{U}^T$$

where D^+ is a p-by-p diagonal matrix with the diagonal elements e_1, \ldots, e_p , where $e_i = 1/d_i$ if $d_i > 0$, and $e_i = 0$ otherwise $(i = 1, \ldots, p)$.

- (a) 2+2+2+2 Show that $X^+ = VD^+U^T$ fulfills the four properties (i-iv).
- (b) $\boxed{2}$ Show that the matrix \mathbf{D}^+ is the Moore Penrose Inverse of \mathbf{D} .
- (c) 5 Given that the matrix **X** has full-column rank (i.e. k = p), show that

$$\hat{\beta} = \mathbf{X}^+ y$$

is identical to the Least-Squares (LS) estimator $\hat{\beta}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$ for the unknown regression coefficient vector β in the standard linear regression problem:

$$y = \mathbf{X}\beta + \epsilon$$

where **X** is the *N*-by-*p* regressor matrix, *y* is the N-dimensional output vector, and ϵ is the *N*-dimensional vector of noise variables, which is assumed to be multivariate Gaussian distributed: $\epsilon \sim N(0, \sigma^2 \mathbf{I}_N)$.

(d) $\boxed{5}$ Re-consider the regression problem from part (c) and briefly describe how the Bootstrap (Bootstraping procedure) could be used to approximate the covariance matrix $\text{COV}(\hat{\beta}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$ of the estimator $\hat{\beta} = \mathbf{X}^+y$. $\underline{\text{HINT}}$: You can either give a precise verbal description or some pseudo code or a mixture thereof.

¹Just note: Here it does not matter whether the columns of X correspond to p covariates or whether X is built from p-1 covariates with an additional column of 1's for the intercept.

3. Cubic Spline. 10

Consider the interval [-2, 4], in which we fix one point $\xi = 1$. Consider a **piecewise** cubic spline with the knot $\xi = 1$:

$$f(x) = \sum_{i=1}^{K} \beta_i h_i(x)$$

where $x \in [-2, 4]$, and h_1, \ldots, h_K are basis functions.

- (a) $\boxed{5}$ Assume that f(x) is a piecewise polynomial function with K=8 basis functions. Give the basis functions h_1, \ldots, h_8 and the three linear constraints that this cubic spline imposes on the parameters β_i $(i=1,\ldots,8)$.
- (b) $\boxed{5}$ The same spline can also be represented with a set of truncated power basis functions, where the constraints are automatically incorperated. Represent the spline from (a) with a set of $K^* = 5$ truncated power basis functions:

$$f(x) = \sum_{i=1}^{K^*} \theta_i h_i^*(x)$$

HINT: This exercise is about a 'cubic spline'; not about a 'natural cubic spline'.

4. Piecewise-Constant Spline. 10

Consider the interval [-5,5], in which we fix two points $\xi_1 = -1$ and $\xi_2 = 2$. Consider a **piecewise constant spline** with the two knots $\xi_1 = -1$ and $\xi_2 = 2$:

$$f(x) = \sum_{i=1}^{K} \beta_i h_i(x)$$

where $x \in [-5, 5]$, and h_1, \ldots, h_K are basis functions.

Consider the 10 data points (x_i, y_i) (i = 1, ..., 10), provided in Table 1. Use the data to fit the spline $y_i = f(x_i) + \epsilon_i$ (i = 1, ..., 10), where the noise variables are i.i.d. $N(0, \sigma^2)$ distributed, by least squares regression. That is, compute the estimator $\hat{\beta}_{LS}$ of the vector of the unknown parameters $\beta = (\beta_1, ..., \beta_K)^T$ by plugging **X** and y into the equation:

$$\hat{\beta}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$$

i	1	2	3	4	5	6	7	8	9	10
$\overline{x_i}$	-4.9	-3.2	-2.1	-1.9	-0.9	1.7	1.9	2.2	3.7	4.9
y_i	-1.0	-1.6	-0.6	-0.8	2.4	1.6	2.0	-1.5	-1.2	-0.3

Table 1: These 10 data points can be used for fitting the piecewise-constant spline.

5. Linear Discriminant Analysis. 10

Consider a classification problem where the output Y can belong to three different classes: $Y \in \{1,2,3\}$. It is known that the output Y is associated with one single predictor variable X, and from training data (x_i,y_i) $(i=1,\ldots,N)$ all unknown LDA parameters have been estimated. Thereby the following results were obtained: The estimates for the three class prior probabilities are: $\hat{\pi}_1 = 0.1$, $\hat{\pi}_2 = 0.1$ and $\hat{\pi}_3 = 0.8$, the estimates for the three class means are given by: $\hat{\mu}_1 = -2$, $\hat{\mu}_2 = 0$, and $\hat{\mu}_3 = 1$, and finally the estimate for the common variance is: $\hat{\sigma}^2 = 1$.

- (a) 3 Compute the decision boundaries of this LDA model.
- (b) 3 Give the resulting decision rule $\hat{y} = G(x)$. <u>HINT</u>: Note that $G : \mathbb{R} \to \{1, 2, 3\}$ is a piece-wise function.
- (c) 2 Assume that the estimated LDA model, given above, is the true underlying model. Explain verbally why the expected error rate for the classification \hat{y}_{N+1} of a new observation x_{N+1} will not be zero. (One sentence might be enough.)
- (d) 2 Still assuming that the LDA model is correct, give an explicit equation for the expected error rate in terms of cumulative distribution functions (CDFs).

<u>HINT</u>: A Gaussian distribution with parameters $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$ has the PDF:

$$p(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sigma} \cdot e^{-0.5\frac{(x-\mu)^2}{\sigma^2}}$$

for $x \in \mathbb{R}$.

The CDF of this Gaussian distribution is given by: $F_{\mu,\sigma^2}(x_0) = \int_{-\infty}^{x_0} p(x|\mu,\sigma^2) dx$

6. AdaBoost - Population Minimizer. 10

Consider a binary classification problem with an output variable $Y \in \{-1, 1\}$, where Y = -1 means that an observation belongs to the first class, while Y = 1 means that an observation belongs to the second class. Let x be the realisation of a potential predictor variable X, and given X = x, let $\hat{y} = f(x) \in \mathbb{R}$ be a predictor for the corresponding output realisation y of Y.

Show that the predictor

$$f^{\star}(x) = \frac{1}{2} \log \left(\frac{P(Y=1|X=x)}{P(Y=-1|X=x)} \right)$$

is the 'population minimiser' which minimises the conditional expectation:

$$E_{Y|X=x}[L(Y,f(x))]$$

where L(.,.) is the exponential loss function with $L(a,b) = e^{-a \cdot b}$ for all $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

<u>HINT</u>: For a given $x \in \mathbb{R}$, f(x) is real-numbered. Hence, in your computations you might want to substitute f(x) by z where $z \in \mathbb{R}$.

7. EM algorithm. 20

In a clinical study focusing on prostate cancer for each male proband a medical diagnostic test was performed on each of 6 successive days. For n = 196 (diseased probands) with at least one positive test the following frequency distribution was observed:

Positive tests	j 0	1	2	3	4	5	6
Frequency	$Z_0 = ?$	$Z_1 = 37$	$Z_2 = 22$	$Z_3 = 25$	$Z_4 = 29$	$Z_5 = 34$	$Z_6 = 49$

Table 2: Results of the clinical study on prostate cancer. Note that the explicit counts, provided in this table, are not required in this exercise.

Let the random variable Z_i describe the number of diseased probands that had i positive test results (i = 0, ..., 6), where Z_0 has not been recorded, since those probands were assumed **not** to suffer from prostate cancer.²

Let the random variable X_j describe the number of positive tests for proband j, and assume that the X_j 's are i.i.d. and Binomial distributed with parameters m=6 and π (the PDF of the Binomial distribution is given below).

- (a) 5+5 Assume that the realisation of Z_0 was also known. Determine the log-likelihood $l_0(Z_0, Z_1, \ldots, Z_6; \pi)$ ('of the complete data') and derive the Maximum Likelihood (ML) estimator for π . Give all expressions in terms of the counts Z_0, \ldots, Z_6 . That is, do <u>not</u> plug-in the concrete counts from the table.
- (b) 4 Now assume that the parameter π rather than the realisation of Z_0 was known. What is then the expectation of Z_0 ?

 To this end first determine the probability $\gamma := P(X_j = 0)$. Moreover, $Z_0 + n$ can be interpreted as the 'number of trials till n = 196 positive tests have been obtained'; a quantity which is negative Binomial distributed. What are the parameters of this negative Binomial distribution? And what is the conditional expectation $E[Z_0|(Z_1,\ldots,Z_6),\pi]$ of Z_0 ?
- (c) 1 The E-step: Give a formula for the conditional expectation $Q(\pi, \hat{\pi}^{(j)})$, defined below, of $l_0((Z_1, \ldots, Z_6); \pi)$:

$$Q(\pi, \hat{\pi}^{(j)}) := E[l_0((Z_0, Z_1, \dots, Z_6); \pi) | (Z_1, \dots, Z_6), \hat{\pi}^{(j)}]$$

where $\hat{\pi}^{(j)}$ is a fixed value for π . HINT: Re-use your results from parts (a-b).

(d) 1 The M-step: Give a formula for $\hat{\pi}^{(j+1)}$ which maximises $Q(\pi, \hat{\pi}^{(j)})$ w.r.t. the free parameter π . HINT: Re-use your result from part (a).

 $^{^2}$ <u>Just note</u>: Even if the number of probands without any positive test result Z_0 had been recorded, it would have been the sum of those probands that actually do not have prostate cancer and those that suffer from prostate cancer but had 6 false-negative test results.

(e) 4 EM algorithm: Give pseudo code for an EM-algorithm which iteratively infers the ML-estimator $\hat{\pi}_{ML}$ for the log-likelihood $l((Z_1, \ldots, Z_6); \pi)$ ('of the incomplete data').

HINTS: Re-use your results from the previous parts.

Proposed structure of your pseudo code:

START OF PSEUDO CODE

Initialisation: Set $\pi^{(1)} = \dots$

 $\overline{\underline{\text{Iterations}}} \ \overline{\text{For}} \ t = 1, 2, 3, \text{ etc.}$

- E-Step: Compute ...
- M-Step: Compute $\pi^{(t+1)} = \dots$
- If ... then stop the iterations and output $\hat{\pi}_{ML} := \dots$

END OF PSEUDO CODE

SOME GENERAL HINTS:

The density (PDF) of the **binomial distribution** with parameters $n \in \mathbb{N}$ and $\pi \in [0,1]$ is given by

$$p(x|n,\pi) = \binom{n}{x} \cdot \pi^x \cdot (1-\pi)^{n-x}$$

for $x \in \{0, 1, \dots, n\}$.

The density (PDF) of the **negative binomial distribution** with two parameters $r \in \mathbb{N}$ and $\theta \in [0, 1]$ is given by

$$p(x|\theta,r) = {x-1 \choose x-r} \cdot (1-\theta)^{x-r} \cdot \theta^r$$

for $x \in \{r, r+1, r+2, \ldots\}$.

Also note that the expectation of the negative Binomial distribution is given by $E[X] = r/\theta$. Recall that a common interpretation is the following one: 'An experiment is successful with probability θ and it fails with the complementary probability $1-\theta$. The experiment is repeated independently. The negative Binomial distributed variable X describes how often this experiment has to be repeated until r successes have been observed.'

END OF EXAM